Browse Technologies

Displaying 11 - 20 of 184


Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505

NMR Signal Amplification by Reversible Exchange (SABRE) in Water

Vanderbilt researchers have developed a method to perform the Parahydrogen Induced Polarization (PHIP) based method of Signal Amplification by Reversible Exchange (SABRE) in aqueous media. This allows the resulting hyperpolarized molecules to be used for in vivo applications.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067

Heterogeneous catalysis of NMR Signal Amplification by Reversible Exchange(SABRE)

Vanderbilt researchers have developed heterogeneous catalysis and catalyst for the NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization process. Coupled with the researchers' development of a method to perform SABRE in aqueous solutions, this discovery could allow fully biocompatible SABRE hyperpolarization processes in water with catalyst recycling. This would allow the production of pure aqueous contrast agents requiring only parahydrogen as a consumable.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Guide Wire Torque Device for Interventional Medical Procedures

Vanderbilt University researchers have created a torque device that allows surgeons to apply better torque and grip to guide wires used in interventional medical procedures.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Michael Nichols
Medical Devices

COX2 Probes for Multimodal Imaging

Inventors at Vanderbilt University have developed a novel chemical design and synthesis process for azulene-based COX2 contrast agents which can be used for molecular imaging, via a variety of imaging techniques. These COX2 probes can be utilized for numerous applications, including imaging cancers and inflammation caused by arthritis and cardiovascular diseases. The process for developing these COX2 contrast agents has been significantly improved through a convergent synthesis process which reduces the required steps to establish the COX2 precursors.


Licensing Contact

Masood Machingal

615.343.3548

A Simple and Highly Portable Flow Phantom for Doppler Ultrasound Quality Measurements

A new phantom has been designed in which Doppler ultrasound measurements can be conducted for quality assurance purposes. The phantom is highly portable, does not require power to operate, and allows for simple and reproducible measurements of Doppler ultrasound function. This combination of advantages allows for realistic monthly, weekly, even daily Doppler QA measurements.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Vascular Restoration Therapy with Cell-Penetrating CRADD Protein

Vascular inflammation caused by metabolic, autoimmune, and microbial insults mediates cardiovascular diseases that include hypertension and atherosclerosis (heart attacks, strokes), systemic lupus, and giant cell arteritis. An estimated 35 million Americans have hypercholesterolemia, contributing to 500,000 deaths underlying heart attacks and strokes. In these diseases, metabolic, autoimmune, and microbial insults continually challenge blood and vascular cells by triggering signaling to the nucleus mediated by BCL10. Genetic ablation of BCL10 rescues animals from atherosclerosis, aortic aneurysms, and fatty liver and insulin resistance due to overnutrition. Intracellular therapy with CP-CRADD is designed to extinguish BCL10-mediated noxious signals to avert vascular inflammation and its life-threatening complications including ruptured aneurysms in aorta and brain.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics

Low-cost, Normally Closed Microfluidic Valve

Vanderbilt researchers have developed a normally closed valve that is able to provide selective movement of small fluid quantities in a microfluidic device. The present microfluidic valve can be actuated using a simple rotating drivehead and mechanical support, greatly simplifying the valve design.


Licensing Contact

Masood Machingal

615.343.3548

New Drug for Blood Clot: FXII Inhibitors to Treat Thrombosis

Thrombosis is the formation of a blood clot inside a blood vessel, which may cause reduced blood flow to a tissue, or even tissue death. Thrombosis, inflammation, and infections are responsible for >70% of all human mortality. Thrombosis is also the major factor for heart disease and stroke. 500,000 die from thrombosis every year in Europe. Inhibitory treatment of these conditions may also improve the outcomes of several non-fatal diseases. Researchers from Vanderbilt University and Oregon Health & Science University have jointly discovered new monoclonal antibodies that potently inhibit the blood coagulation protein factor XII (FXII), a critical player in the pathway, and anticoagulate blood. This invention provides foundation for commercial development of anti-thrombotic drugs based on new molecular entities.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Antibody
Assays/Screening