Browse Technologies

Displaying 11 - 20 of 184


IntelliCane: Instrumented cane for diagnosis and evaluation of gait behavior in individuals with mobility issues.

This device is designed to assist physical therapists in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage.Currently gait characteristics are "measured" in a clinic-based atmosphere. This has two limitations: (i) subjective allocation of "measures" of gait characteristics and (ii) limited data based on trials in the clinic ONLY. What this technology is designed to do is achieve freedom from both of these limitations. The measurements are objective and numerical values (force etc.) and the clinic could provide the cane to the user for obtaining a much more extensive data set including use during normal life activities at home etc.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

A Robotic System for Treating Intracranial Hemorrhage (ICH)

Vanderbilt researchers have designed a general purpose system for precise steering of multi-lumen needles. One significant application of the system is decompression of the cranium during hemorrhagic events (ICH).


Licensing Contact

Chris Harris

615.343.4433

Higher Accuracy Image-Guidance in Surgery

Vanderbilt engineers have designed and built a device that improves the accuracy of image-guidance systems (IGS) during surgery. The device creates a custom,  non-slip fit over the head and provides a rigid platform for attaching optical tracking markers to the patient, which is a critical component of image-guided neurosurgical procedures. The device can be used to improve the accuracy of IGS in other areas of the anatomy as well.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Chris Harris

615.343.4433

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

I-Wire: A Biotension Measurement Device for Tissue Engineering and Pharmacology

Vanderbilt researchers have developed an integrated system ("I-Wire") for the growth of miniature, engineered 3D cardiac or other muscle or connective tissues and their active and passive mechanical characterization. The system utilizes an inverted microscope to measure the strain when the tissue constructs are laterally displaced using a calibrated flexible cantilevered probe.


Licensing Contact

Masood Machingal

615.343.3548

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Chris Harris

615.343.4433

Organ-on-a-Chip System

Vanderbilt researchers have developed a group of microfluidic organ-on-chip devices that include perfusion controllers, microclinical analyzers, microformulators, and integrated microfluidic measurement chips. Together, these devices can measure and control multiple organ-on-chip systems in order to model the multi-organ physiology of humans.


Licensing Contact

Masood Machingal

615.343.3548
Microfluidics

Low-cost, Normally Closed Microfluidic Valve

Vanderbilt researchers have developed a normally closed valve that is able to provide selective movement of small fluid quantities in a microfluidic device. The present microfluidic valve can be actuated using a simple rotating drivehead and mechanical support, greatly simplifying the valve design.


Licensing Contact

Masood Machingal

615.343.3548

Breast Tumor Margin Detection System Using Spatially Offset Raman Spectroscopy

Vanderbilt University researchers have developed a technology that uses spatially offset Raman spectroscopy to obtain depth-resolved information from the margins of tumors. This helps to determine positive or negative tumor margins in applications such as breast lumpectomy, and the technology is currently being investigated for breast cancer margin detection.


Licensing Contact

Masood Machingal

615.343.3548