Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.
TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models
Vanderbilt University researchers have developed a novel approach for creating dynamic, tunable reflective color displays using an electrochemical modulator. The technology can be implemented into devices requiring low power reflective color displays, such as smart watches and e-readers, and is adaptable for spectral control across a broad spectrum of frequencies from the visible to the far infrared. This technology provides a low power, tunable approach for modulating the optical properties of a material.
Vanderbilt researchers have developed a novel MRI-based method for fast, robust, and accurate imaging of biological tissue by selecting a specific cell size range (such as tumors) without the need for a contrast agent. One exciting application of this method is imaging brain metastases (BM) that are difficult to differentiate from other brain abnormalities such as radionecrosis when using existing approaches.
Vanderbilt researchers have synthesized porous adsorbent materials for the capture of toxic industrial chemicals. These adsorbent materials have finely dispersed reactive sites that allow for higher adsorption capacities than existing materials. They can be used in filters for the military, homeland security, first responders, and for a wide range of industrial and commercial catalysts to capture toxic gases such as ammonia and sulfur dioxide.
Researchers at Vanderbilt University have developed a new method of producing microscale and nanoscale ferroelectric fluids. These particles are useful in a variety of piezoelectric, pyroelectric, and electrooptic devices such as thin-film capacitors, electronic transducers, actuators, high-k dielectrics, pyroelectric sensors, and optical memories.
Vanderbilt Medical Center researchers have developed a non-invasive and reproducible method of assessing right-ventricular function using contrast-echocardiography. The right-ventricular transit time (RVTT) measures the time needed for echocardiographic contrast to travel from the RV to the bifurcation of the main pulmonary artery. Coupled with the pulmonary transit time (PTT), the time needed for contrast to traverse the entire pulmonary circulation, RVTT is part of a family of diagnostic parameters that can report on RV-specific performance as well as the RV's function relative to that of the pulmonary circuit as a whole.
The standard for kidney stone detection is through the use of computed tomography (CT). However, CT is expensive and delivers harmful ionizing radiation into the body. Ultrasound would be the ideal way to detect kidney stones except that it performs poorly in detecting and accurately sizing stones. Vanderbilt researchers inventors have developed a technique that is able to separate hard, mineralized material (i.e kidney stones) from soft tissue in a way that is both cheaper and safer than CT and performs better than conventional ultrasound imaging.
Phase change materials (PCMs) are a fascinating class of materials that can change certain material properties (e.g., absorbance or reflectivity) upon the application of a stimulus. Researchers at Vanderbilt University have used a PCM to create a novel metamaterial that can be reconfigured for use in a wide range of potential optical and integrated photonic applications from the infrared to terahertz spectral domain.
Vanderbilt and Fisk University researchers have developed a new type of gamma ray spectroscope (GRS) that overcomes the limitations of current systems. This type of GRS can be used to accurately determine the subsurface chemical composition of celestial bodies in the solar system.