Browse Technologies

Displaying 21 - 30 of 58


Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney

615.322.1067

Miniature Optical Coherence Tomography Probe for Real-time Monitoring of Surgery

Vanderbilt researchers have designed a forward scanning miniature intraoperative Optical Coherence Tomography (OCT) probe that can be used for diagnostic purposes and real-time monitoring of surgery within small spaces, such as endoscopic surgery, intraocular surgery, and other microsurgery.


Licensing Contact

Taylor Jordan

615.936.7505

Minimally Invasive Telerobotic Platform for Transurethral Exploration and Intervention

This technology, developed in Vanderbilt University's Advanced Robotics and Mechanism Applications Laboratory, uses a minimally invasive telerobotic platform to perform transurethral procedures, such as transurethral resection. This robotic device provides high levels of precision and dexterity that improve patient outcomes in transurethral procedures.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Genitourinary

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Inexpensive Disposable Hydro-Jet Capsule Robot for Gastric Cancer Screening in Low-Income Countries

Gastric cancer is the second leading cause of cancer death worldwide. While screening programs have had a tremendous impact on reducing mortality, the majority of cases occur in low and middle-income countries (LMIC). Typically, screening for gastric and esophageal cancer is performed using a flexible endoscope; however, endoscopy resources for these settings are traditionally limited. With the development of an inexpensive, disposable system by Vanderbilt researchers, gastroscopy and colonoscopy can be facilitated in areas hampered by a lack of access to the appropriate means.


Licensing Contact

Masood Machingal

615.343.3548

PIQASO: A rigid phantom for comprehensive end-to-end evaluation of online adaptive radiotherapy systems

There is currently no radiotherapy phantom capable of quantitatively assessing all components of an online adaptive radiotherapy (online ART) system in a comprehensive end-to-end test.Represented here is a novel, rigid phantom that can simultaneously evaluate an online ART system's image acquisition, deformable image registration, contour propagation, plan re-optimization, dose calculation, and beam delivery in a single process that is robust, quantitative, and convenient.


Licensing Contact

Masood Machingal

615.343.3548

Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Taylor Jordan

615.936.7505

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Masood Machingal

615.343.3548

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Chris Harris

615.343.4433