An award-winning Vanderbilt University researcher used plasmonics to develop a new kind of nanotweezers that can rapidly trap and detect molecules, viruses and DNA – a device transformative for medicine that also has color printing applications.
Assistant Professor of Electrical Engineering Justus Ndukaife and his Purdue University collaborators poked holes in gold film smaller than the wavelength of light. Squeezing light into such small volumes is enabled by surface plasmon resonance, a phenomenon that causes molecules to be trapped near the film, making them available for study under powerful microscopes.
The result is what’s commonly known as a lab-on-a-chip – a new way of detecting and diagnosing cancer, viruses or any number of ailments.
Ndukaife’s nanotweezers require less laser power, have more potential to trap and stabilize molecules and allow for higher resolution than previous versions used for lab-on-a-chip applications.
He said they also have the potential for using broadband wavelength light source to assemble gold and silicon nanoparticles, which could have applications for permanent, non-fading color printing.
His results recently were published in the journal ACS Nano. The work was made possible by the National Science Foundation’s Materials Research Science and Engineering Centers grant DMR-1120923.