Browse Technologies

Displaying 1 - 10 of 25


Fused in Sarcoma (FUS) Nuclear Translocation Inhibitors for Preventing Fibrosis

The research team has found that one of the key regulators of collagen production in fibrotic diseases is the FUS ribonucleoprotein. This protein is upregulated in fibrotic diseases leading to additional collagen formation and deposition. In order to combat FUS upregulation, a new approach to blocking nuclear translocation has been developed using an FUS targeting peptide approach.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Licensing Contact

Masood Machingal

615.343.3548

Human antibodies targeting a novel flu epitope for use as a universal flu vaccine and treatment

Scientists at Vanderbilt have discovered a new class of human antibodies specific to a novel target for the detection, prevention, and treatment of influenza A viruses (IAV). Using structural characterization, they have identified a novel antigenic site on the hemagglutin (HA) head domain that may be targeted by multiple antibodies simultaneously in a non-competitive manner. They found that administration of these antibodies against an otherwise lethal challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes confers protection when used as prophylaxis or therapy against major IAV subtypes that are pathogenic to humans. These antibodies may prove effective as a universal influenza treatment or in the design of a universal influenza vaccine.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

James Crowe, Seth Zost

Prevention of Cytokine Induced Apoptosis In Intestinal Epithelial Cells By A Probiotic Bacterium

The present invention provides therapeutic and prophylactic compositions for use in treating and preventing disorders involved epithelial cell apoptosis, such as gastrointestinal disorders (e.g., inflammatory bowel disease, Crohn's disease or ulcerative colitis) in a subject, such as a human patient.


Licensing Contact

Mike Villalobos

615.322.6751

Inventors

Brent Polk, Fang Yan
Therapeutics
Gastrointestinal
Protein/Peptide

Small Molecule mGlu3 NAMs as Therapeutics for CNS Disorders

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Small Molecule

mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Small Molecule

Novel anti-platelet therapy for treatment of thrombosis, cardiovascular disease, and cerebrovascular injury

One of the leading causes of deaths in developed countries is related to thromboembolism. PAR-4 (protease activated receptor-4) is one of two receptors on the human platelet that respond to thrombin, the central enzyme of coagulation.  Researchers here at Vanderbilt University have developed novel antagonists of PAR-4 that could be beneficial for patients allowing for normal hemostasis during treatment for thrombotic events.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Cardiovascular

Long-Lasting and Self-Sustaining Cell Therapy System

Researchers at Vanderbilt have created a novel drug delivery system using two distinct T-cell populations that interact to promote engraftment and persistence in pre-clinical models, increasing the efficacy of T-cell therapies. Furthermore, "booster" treatments can be administered months after the first dose to produce an expansion of antigen specific T cells. These advantages result in longer-term therapeutic efficacy and could reduce the number of treatments required. This system also represents a viable self-renewing platform for the delivery of biologic drugs in patients who would otherwise require frequent administration.


Licensing Contact

Cameron Sargent

615.322.5907

New antibiotics against new targets in multi-drug resistant microorganisms

New everninomicin antibiotics including a potent bifunctional antibiotic natural product targeting two different and distant ribosomal sites are under development and can be readily produced using synthetic biology. Developing resistance to this bidentate antibiotic should be very difficult for pathogenic microorganisms.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Infectious Disease

New Drug for Blood Clot: FXII Inhibitors to Treat Thrombosis

Thrombosis is the formation of a blood clot inside a blood vessel, which may cause reduced blood flow to a tissue, or even tissue death. Thrombosis, inflammation, and infections are responsible for >70% of all human mortality. Thrombosis is also the major factor for heart disease and stroke. 500,000 die from thrombosis every year in Europe. Inhibitory treatment of these conditions may also improve the outcomes of several non-fatal diseases. Researchers from Vanderbilt University and Oregon Health & Science University have jointly discovered new monoclonal antibodies that potently inhibit the blood coagulation protein factor XII (FXII), a critical player in the pathway, and anticoagulate blood. This invention provides foundation for commercial development of anti-thrombotic drugs based on new molecular entities.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Antibody
Assays/Screening