Infectious Disease

Displaying 1 - 8 of 8


Quantitative rapid diagnostic platform using porous silicon on paper

This technology combines the sensitivity of porous silicon with the speed of lateral flowassays to create a point-of-care diagnostic platform capable of rapidly and accuratelymeasuring biomarkers.


Licensing Contact

Cameron Sargent

615.322.5907
Diagnostics
Infectious Disease

Targeted photodynamic therapy for S. aureus infections

Vanderbilt researchers have developed a combination photodynamic therapy (PDT) for targeting MRSA infections in skin that is not only effective but also HIGHLY SPECIFIC and LESS SUSCEPTIBLE TO RESISTANCE, adding a much needed therapy to our quickly depleting arsenal against this pathogen.


Licensing Contact

Cameron Sargent

615.322.5907

Wolbachia genetic tools for population control of harmful insects

Vanderbilt scientists have engineered transgenic methods for controlling the populations of insects, including infectious disease vectors like mosquitoes and agricultural pests that destroy crops and livestock.


Licensing Contact

Cameron Sargent

615.322.5907

Targeted light-based therapy for acne

Vanderbilt researchers have developed a photodynamic therapy (PDT) for effectively and specifically treating acne, the most common skin condition.


Licensing Contact

Cameron Sargent

615.322.5907
Therapeutics
Small Molecule

Genetically Modified Cell Line for Enhanced Viral Vector Manufacturing

Recent FDA approvals have spurred the demand for viral vector products,prompting the need for more efficient bioproduction methods. In this context,Vanderbilt researchers have engineered a new cell line with significantlyenhanced viral production capabilities compared to traditional cell lines. Thisinnovation is expected to lead to substantial cost savings in viral vectorproduction and improved viral products, two key advantages in the industry.


Licensing Contact

Cameron Sargent

615.322.5907

Human antibodies targeting a novel flu epitope for use as a universal flu vaccine and treatment

Scientists at Vanderbilt have discovered a new class of human antibodies specific to a novel target for the detection, prevention, and treatment of influenza A viruses (IAV). Using structural characterization, they have identified a novel antigenic site on the hemagglutin (HA) head domain that may be targeted by multiple antibodies simultaneously in a non-competitive manner. They found that administration of these antibodies against an otherwise lethal challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes confers protection when used as prophylaxis or therapy against major IAV subtypes that are pathogenic to humans. These antibodies may prove effective as a universal influenza treatment or in the design of a universal influenza vaccine.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

James Crowe, Seth Zost

New antibiotics against new targets in multi-drug resistant microorganisms

New everninomicin antibiotics including a potent bifunctional antibiotic natural product targeting two different and distant ribosomal sites are under development and can be readily produced using synthetic biology. Developing resistance to this bidentate antibiotic should be very difficult for pathogenic microorganisms.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Infectious Disease

Luciferase Reporter System for Viral Detection in Vitro and in Vivo

This research targets Respiratory Syncytial Virus.


Licensing Contact

Taylor Jordan

615.936.7505