Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.
Inventors at Vanderbilt University have developed a novel chemical design and synthesis process for azulene-based COX2 contrast agents which can be used for molecular imaging, via a variety of imaging techniques. These COX2 probes can be utilized for numerous applications, including imaging cancers and inflammation caused by arthritis and cardiovascular diseases. The process for developing these COX2 contrast agents has been significantly improved through a convergent synthesis process which reduces the required steps to establish the COX2 precursors.
Vanderbilt researchers led by Dr. Nilanjan Sarkar have invented a multimodal data capture system that gathers multi-sensory data from children and their groundtruth affective states to build a machine learning model yielding individualized profiles in accordance to the interview-informed synthesized contingency analysis.
Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).
The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.
Vanderbilt researchers lead by Professor Wellington Pham, PhD, have developed a novel ergothioneine (ERGO) PET radioligand for imaging oxidative stress in Alzheimer's disease.
Allows for targeted deletion of the GluN2B subunit of NMDA receptors in specific cells or at specific times during development, juvenile, or adult stages. C57BL6/J background