Medical Devices

Displaying 1 - 10 of 59


Wireless soft robots for in vivo mucus property measurement

The material properties of mucus, such as viscosity and pH, provide information about the well-being of various organ systems. To improve accessibility to mucus sites from throughout the body and increase the validity of measurements, Vanderbilt researchers have developed a wireless millimeter-scale soft robot for direct and accurate mucus sensing throughout the body.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

Silicone Airway Stent with Wirelessly Actuated Cilia for Mucus Removal

Various widespread diseases associated with airway constriction can be combatted using airway stents. However, such stents are either prone to clogging themselves or tend to invade neighboring tissue. Vanderbilt engineers have developed a technology that avoids both of these pitfalls by combining the use of tissue-friendly silicone with active cilia for mucus clearing.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

Aliquot Delivery System

Vanderbilt researchers have developed a novel device for accurately delivering a small aliquot of liquid pharmaceutical agent to a treatment site. This system enables more precise dosage and eliminates expensive waste found in conventional methods.


Licensing Contact

Brennen Carr

615.343.2430
Medical Devices

ML-powered software for planning sleep apnea surgery

High-resolution pharyngeal manometry (HRM) provides an inexpensive and objective method for analyzing the pharynx during natural sleep and can be utilized to select candidates for certain surgical procedures for obstructive sleep apnea (OSA).


Licensing Contact

Chris Harris

615.343.4433

Head Motion Correction with Soft Pressure Pad for MRI Scans

Vanderbilt University researchers have developed a novel soft pressure sensing pad to track head motion during MRI to improve diagnostic image quality and reduce erroneous artifacts.


Licensing Contact

Chris Harris

615.343.4433

Highly maneuverable radiation protection for interventional radiology

An interdisciplinary team of Vanderbilt doctors and engineers has designed a more user-friendly mounting system for radiation protection shields that maintains a high level of protection from hazardous scattered radiation without impeding the workflow of interventional radiologists.


Licensing Contact

Cameron Sargent

615.322.5907

Surgical Guide for Intraoral Vertical Ramus Osteotomy

Vanderbilt researchers have developed a novel surgical guide for intraoral vertical ramus osteotomy (IVRO) that helps to preserve the proximal segment medial pterygoid attachment and avoid injury to the inferior alveolar neurovascular bundle during the procedure.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

IntelliCane: Instrumented cane for diagnosis and evaluation of gait behavior in individuals with mobility issues.

This device is designed to assist physical therapists in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage.Currently gait characteristics are "measured" in a clinic-based atmosphere. This has two limitations: (i) subjective allocation of "measures" of gait characteristics and (ii) limited data based on trials in the clinic ONLY. What this technology is designed to do is achieve freedom from both of these limitations. The measurements are objective and numerical values (force etc.) and the clinic could provide the cane to the user for obtaining a much more extensive data set including use during normal life activities at home etc.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

A Robotic System for Treating Intracranial Hemorrhage (ICH)

Vanderbilt researchers have designed a general purpose system for precise steering of multi-lumen needles. One significant application of the system is decompression of the cranium during hemorrhagic events (ICH).


Licensing Contact

Chris Harris

615.343.4433