Medical Devices

Displaying 1 - 10 of 57


Perceptive catheter system for thrombus retrieval and aneurysm embolization

Vanderbilt researchers have developed a catheter capable of detecting thrombus engagement to ensure more rapid removal.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Cardiovascular

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Brennen Carr
john.b.carr.1@vanderbilt.edu
615.343.2430

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Medical Devices

Wireless soft robots for in vivo mucus property measurement

The material properties of mucus, such as viscosity and pH, provide information about the well-being of various organ systems. To improve accessibility to mucus sites from throughout the body and increase the validity of measurements, Vanderbilt researchers have developed a wireless millimeter-scale soft robot for direct and accurate mucus sensing throughout the body.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067
Medical Devices

Silicone Airway Stent with Wirelessly Actuated Cilia for Mucus Removal

Various widespread diseases associated with airway constriction can be combatted using airway stents. However, such stents are either prone to clogging themselves or tend to invade neighboring tissue. Vanderbilt engineers have developed a technology that avoids both of these pitfalls by combining the use of tissue-friendly silicone with active cilia for mucus clearing.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067
Medical Devices

Aliquot Delivery System

Vanderbilt researchers have developed a novel device for accurately delivering a small aliquot of liquid pharmaceutical agent to a treatment site. This system enables more precise dosage and eliminates expensive waste found in conventional methods.


Licensing Contact

Brennen Carr
john.b.carr.1@vanderbilt.edu
615.343.2430
Medical Devices

ML-powered software for planning sleep apnea surgery

High-resolution pharyngeal manometry (HRM) provides an inexpensive and objective method for analyzing the pharynx during natural sleep and can be utilized to select candidates for certain surgical procedures for obstructive sleep apnea (OSA).


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Head Motion Correction with Soft Pressure Pad for MRI Scans

Vanderbilt University researchers have developed a novel soft pressure sensing pad to track head motion during MRI to improve diagnostic image quality and reduce erroneous artifacts.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Surgical Guide for Intraoral Vertical Ramus Osteotomy

Vanderbilt researchers have developed a novel surgical guide for intraoral vertical ramus osteotomy (IVRO) that helps to preserve the proximal segment medial pterygoid attachment and avoid injury to the inferior alveolar neurovascular bundle during the procedure.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067
Medical Devices