Medical Devices

Displaying 1 - 10 of 57


A Robotic System for Treating Intracranial Hemorrhage (ICH)

Vanderbilt researchers have designed a general purpose system for precise steering of multi-lumen needles. One significant application of the system is decompression of the cranium during hemorrhagic events (ICH).


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433
Medical Devices

Silicone Airway Stent with Wirelessly Actuated Cilia for Mucus Removal

Various widespread diseases associated with airway constriction can be combatted using airway stents. However, such stents are either prone to clogging themselves or tend to invade neighboring tissue. Vanderbilt engineers have developed a technology that avoids both of these pitfalls by combining the use of tissue-friendly silicone with active cilia for mucus clearing.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067
Medical Devices

Perceptive catheter system for thrombus retrieval and aneurysm embolization

Vanderbilt researchers have developed a catheter capable of detecting thrombus engagement to ensure more rapid removal.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Cardiovascular

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Brennen Carr
john.b.carr.1@vanderbilt.edu
615.343.2430

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Medical Devices

Wireless soft robots for in vivo mucus property measurement

The material properties of mucus, such as viscosity and pH, provide information about the well-being of various organ systems. To improve accessibility to mucus sites from throughout the body and increase the validity of measurements, Vanderbilt researchers have developed a wireless millimeter-scale soft robot for direct and accurate mucus sensing throughout the body.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067
Medical Devices

Aliquot Delivery System

Vanderbilt researchers have developed a novel device for accurately delivering a small aliquot of liquid pharmaceutical agent to a treatment site. This system enables more precise dosage and eliminates expensive waste found in conventional methods.


Licensing Contact

Brennen Carr
john.b.carr.1@vanderbilt.edu
615.343.2430
Medical Devices