Medical Devices

Displaying 1 - 10 of 57


Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Taylor Jordan
taylor.jordan@vanderbilt.edu
615.936.7505

Inexpensive Disposable Hydro-Jet Capsule Robot for Gastric Cancer Screening in Low-Income Countries

Gastric cancer is the second leading cause of cancer death worldwide. While screening programs have had a tremendous impact on reducing mortality, the majority of cases occur in low and middle-income countries (LMIC). Typically, screening for gastric and esophageal cancer is performed using a flexible endoscope; however, endoscopy resources for these settings are traditionally limited. With the development of an inexpensive, disposable system by Vanderbilt researchers, gastroscopy and colonoscopy can be facilitated in areas hampered by a lack of access to the appropriate means.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

PIQASO: A rigid phantom for comprehensive end-to-end evaluation of online adaptive radiotherapy systems

There is currently no radiotherapy phantom capable of quantitatively assessing all components of an online adaptive radiotherapy (online ART) system in a comprehensive end-to-end test.Represented here is a novel, rigid phantom that can simultaneously evaluate an online ART system's image acquisition, deformable image registration, contour propagation, plan re-optimization, dose calculation, and beam delivery in a single process that is robust, quantitative, and convenient.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Surgical Guide for Intraoral Vertical Ramus Osteotomy

Vanderbilt researchers have developed a novel surgical guide for intraoral vertical ramus osteotomy (IVRO) that helps to preserve the proximal segment medial pterygoid attachment and avoid injury to the inferior alveolar neurovascular bundle during the procedure.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067
Medical Devices

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan
taylor.jordan@vanderbilt.edu
615.936.7505

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Brennen Carr
john.b.carr.1@vanderbilt.edu
615.343.2430

Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Guide Wire Torque Device for Interventional Medical Procedures

Vanderbilt University researchers have created a torque device that allows surgeons to apply better torque and grip to guide wires used in interventional medical procedures.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Inventors

Michael Nichols
Medical Devices