Medical Devices

Displaying 1 - 10 of 54


Method and System for Automating Oxygen Monitoring and Dosing in Real Time for Patient on Oxygen Therapy

Vanderbilt researcher, Lisa Lancaster, MD, has developed a novel device to monitor the flow as well as adjust actively the levels of oxygen that pass to a patient suffering from Idiopathic Pulmonary Fibrosis or other causes of hypoxic lung disease. Standing out of the pack, this device ensures that patients exerting themselves are given enough oxygen while actively reducing the dosage, to prevent further damage, when the same patient is resting.


Licensing Contact

Masood Machingal

615.343.3548

Inventors

Lisa Lancaster
Medical Devices
Pulmonary/Respiratory

Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.


Licensing Contact

Chris Harris

615.343.4433

Bedside Disposable Endoscope

Bedside Disposable Endoscope


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Gastrointestinal

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Continuum Robots with Equilibrium Modulation (CREM)

The A.R.M.A. Laboratory of Vanderbilt University has developed a novel continuum robot design enabling multi-scale motion at the macro and micro scale. The unique design allows miniaturization with minimal added cost thereby potentially giving rise to a new generation of surgical robots capable of both macro-motion for surgical intervention and micro-scale motion for cellular-level imaging or intervention. Micro-motion is achieved through a unique method for altering the equilibrium pose of the robot via material re-distribution throughout the length of the robot. This process ushers in a new class of surgical robotics termed continuum robots with equilibrium modulation (CREM).


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

MRI COIL ARRAY ENABLING FOCUSED ULTRASOUND OUTSIDE THE MRI ENVIRONMENT

This technology pairs a novel coil design with patient-specific stereotactic frames for precise delivery of focused ultrasound (FUS) during neuromodulation therapies. This innovative methodology enables patients to receive therapy while outside the MR environment and significantly increases the precision of noninvasive neuromodulation techniques, making treatments more accessible and effective.


Licensing Contact

Chris Harris

615.343.4433

Upper Extremity Assistance Device

An assistive device for individuals with upper extremity neuromuscular deficit has been developed by researchers at Vanderbilt. This device is specifically designed for patients having hemiplegia following stroke, incomplete spinal cord injury, multiple sclerosis, and other disabilities and conditions, who may have severe muscle weakness or inability to fully control an upper limb. In order to facilitate use of the upper limb, the patient can wear the device as a substitute for or a supplement to the patient's volitional movement.


Licensing Contact

Taylor Jordan

615.936.7505

Pulsed Infrared Light for the Inhibition of Central Nervous System Neurons

Vanderbilt researchers have developed a novel method for contactless simulation of the central nervous system. This technique involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system. While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Higher Accuracy Image-Guidance in Surgery

Vanderbilt engineers have designed and built a device that improves the accuracy of image-guidance systems (IGS) during surgery. The device creates a custom,  non-slip fit over the head and provides a rigid platform for attaching optical tracking markers to the patient, which is a critical component of image-guided neurosurgical procedures. The device can be used to improve the accuracy of IGS in other areas of the anatomy as well.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices