Browse Technologies

Displaying 1 - 10 of 57


Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Non-Invasive Skin Cancer Detection using Raman Spectroscopy-OCT System (Portfolio)

Vanderbilt University researchers have designed a system for non-invasive discrimination between normal and cancerous skin lesions. The system combines the depth-resolving capabilities of OCT technique with Raman Spectroscopy's specificity of molecular chemistry. By linking both imagining techniques into a single detector arm, the complexity, cost, and size of previously reported RS-OCT instruments have been significantly improved. The combined instrument is capable of acquiring data sets that allow for more thorough assessment of a sample than existing optical techniques.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548

Adaptive PCR: A PCR control system to overcome challenging conditions

A PCR control system to overcome challenging conditions. By directly monitoring the hybridization of fluorescently labelled L-DNA mimics of the template DNA strands and primers, it is possible to improve the efficiency of PCR in challenging conditions. This approach eliminates some of the sample preparation and trial and error that would otherwise be required for difficult sample types such as urine or other samples that contain high levels of salts.  In addition, this approach enables on-demand PCR in most any environment.


Licensing Contact

Karen Rufus
karen.rufus@vanderbilt.edu
615.322.4295
Research Reagent

MAESTRO: Non-Robotic Dexterous Laparoscopic Instrument with a Wrist providing seven degrees of freedom

Inventors at Vanderbilt University have developed a non-robotic dexterous laparoscopic manipulator with a wrist providing seven-degrees-of-freedom. The device has a novel user interface that intuitively maps motion of the surgeon's hands to the tool's "hands".


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433
Medical Devices

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan
taylor.jordan@vanderbilt.edu
615.936.7505

Guide Wire Torque Device for Interventional Medical Procedures

Vanderbilt University researchers have created a torque device that allows surgeons to apply better torque and grip to guide wires used in interventional medical procedures.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Inventors

Michael Nichols
Medical Devices

A Robotic System for Treating Intracranial Hemorrhage (ICH)

Vanderbilt researchers have designed a general purpose system for precise steering of multi-lumen needles. One significant application of the system is decompression of the cranium during hemorrhagic events (ICH).


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433
Medical Devices