Browse Technologies

Displaying 1 - 10 of 54


Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.


Licensing Contact

Chris Harris

615.343.4433

Non-Invasive Skin Cancer Detection using Raman Spectroscopy-OCT System (Portfolio)

Vanderbilt University researchers have designed a system for non-invasive discrimination between normal and cancerous skin lesions. The system combines the depth-resolving capabilities of OCT technique with Raman Spectroscopy's specificity of molecular chemistry. By linking both imagining techniques into a single detector arm, the complexity, cost, and size of previously reported RS-OCT instruments have been significantly improved. The combined instrument is capable of acquiring data sets that allow for more thorough assessment of a sample than existing optical techniques.


Licensing Contact

Masood Machingal

615.343.3548

Adaptive PCR: A PCR control system to overcome challenging conditions

A PCR control system to overcome challenging conditions. By directly monitoring the hybridization of fluorescently labelled L-DNA mimics of the template DNA strands and primers, it is possible to improve the efficiency of PCR in challenging conditions. This approach eliminates some of the sample preparation and trial and error that would otherwise be required for difficult sample types such as urine or other samples that contain high levels of salts.  In addition, this approach enables on-demand PCR in most any environment.


Licensing Contact

Karen Rufus

615.322.4295
Research Reagent

MAESTRO: Non-Robotic Dexterous Laparoscopic Instrument with a Wrist providing seven degrees of freedom

Inventors at Vanderbilt University have developed a non-robotic dexterous laparoscopic manipulator with a wrist providing seven-degrees-of-freedom. The device has a novel user interface that intuitively maps motion of the surgeon's hands to the tool's "hands".


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Continuum Robots with Equilibrium Modulation (CREM)

The A.R.M.A. Laboratory of Vanderbilt University has developed a novel continuum robot design enabling multi-scale motion at the macro and micro scale. The unique design allows miniaturization with minimal added cost thereby potentially giving rise to a new generation of surgical robots capable of both macro-motion for surgical intervention and micro-scale motion for cellular-level imaging or intervention. Micro-motion is achieved through a unique method for altering the equilibrium pose of the robot via material re-distribution throughout the length of the robot. This process ushers in a new class of surgical robotics termed continuum robots with equilibrium modulation (CREM).


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Higher Accuracy Image-Guidance in Surgery

Vanderbilt engineers have designed and built a device that improves the accuracy of image-guidance systems (IGS) during surgery. The device creates a custom,  non-slip fit over the head and provides a rigid platform for attaching optical tracking markers to the patient, which is a critical component of image-guided neurosurgical procedures. The device can be used to improve the accuracy of IGS in other areas of the anatomy as well.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Multimodal Data Collection System to Predict Imminent Precursors of Problematic Behaviors and Associated App for Displaying Data

Vanderbilt researchers led by Dr. Nilanjan Sarkar have invented a multimodal data capture system that gathers multi-sensory data from children and their groundtruth affective states to build a machine learning model yielding individualized profiles in accordance to the interview-informed synthesized contingency analysis.


Licensing Contact

Masood Machingal

615.343.3548

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505

A Robotic System for Treating Intracranial Hemorrhage (ICH)

Vanderbilt researchers have designed a general purpose system for precise steering of multi-lumen needles. One significant application of the system is decompression of the cranium during hemorrhagic events (ICH).


Licensing Contact

Chris Harris

615.343.4433