Browse Technologies

Displaying 41 - 50 of 184


Dexterous Robotic Wrist and Gripper for Extreme Precision Micro-surgical Maneuvers in Confined Spaces

This invention presents a robotic wrist and gripper that operate with three independent degrees of freedom (yaw, pitch and roll) for increased dexterity in minimally invasive surgical procedures. This is the smallest robotic wrist of its kind, and due to its size and unparalleled dexterity, this wrist enables complex surgical maneuvers for minimally invasive procedures in highly confined spaces. Examples of surgical areas benefiting from use of this wrist include natural orifice surgery, single port access surgery, and minimally invasive surgery. In particular, the proposed wrist allows for very high precision roll about the longitudinal axis of the gripper while overcoming problems of run-out motion typically encountered in existing wrists. Thus this wrist is particularly suitable for extreme precision maneuvers for micro-surgery in confined spaces.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Medical Devices

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067

Inventors

Michael Miga

Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney
philip.j.swaney@vanderbilt.edu
615.322.1067

Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.


Licensing Contact

Chris Harris
chris.harris@vanderbilt.edu
615.343.4433

Methods for Quick and Safe Deep Access into Mammalian Anatomy

This technology uses a novel continuum robot that provides a steerable channel to enable safe surgical access to the anatomy of a patient. This robotic device has a wide range of clinical application and is a significant advance from the rigid tools currently used in minimally invasive procedures.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Robotics

Miniature Optical Coherence Tomography Probe for Real-time Monitoring of Surgery

Vanderbilt researchers have designed a forward scanning miniature intraoperative Optical Coherence Tomography (OCT) probe that can be used for diagnostic purposes and real-time monitoring of surgery within small spaces, such as endoscopic surgery, intraocular surgery, and other microsurgery.


Licensing Contact

Taylor Jordan
taylor.jordan@vanderbilt.edu
615.936.7505

Minimally Invasive Telerobotic Platform for Transurethral Exploration and Intervention

This technology, developed in Vanderbilt University's Advanced Robotics and Mechanism Applications Laboratory, uses a minimally invasive telerobotic platform to perform transurethral procedures, such as transurethral resection. This robotic device provides high levels of precision and dexterity that improve patient outcomes in transurethral procedures.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548
Medical Devices
Genitourinary

New Molecules Clear Chronic Infections by Disrupting Bacterial Energy Production Pathways

New compounds developed at Vanderbilt demonstrate a unique mechanism of broad spectrum activity to stymy antibacterial resistance. The compounds are particularly useful in chronic infections where long term antibiotic therapy fails, because it specifically kills "small colony variants" -- the bacteria that have developed resistance mechanisms. These compounds show promise in treating Methicillin-resistant S. aureus (MRSA), Bacillus anthracis (anthrax), and in overcoming difficult-to-treat infections in bone in cystic fibrosis patients. These compounds could be combined with new (and old) antimicrobial drugs to outwit resistant bacterial infections.


Licensing Contact

Karen Rufus
karen.rufus@vanderbilt.edu
615.322.4295
Therapeutics

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan
taylor.jordan@vanderbilt.edu
615.936.7505
Medical Devices

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal
masood.machingal@vanderbilt.edu
615.343.3548