Browse Technologies

Displaying 71 - 80 of 184


Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Chris Harris

615.343.4433

Low-Frequency Strain Energy Harvester

Vanderbilt researchers have developed a novel energy-harvesting device capable of efficient electrochemical strain energy harvesting at frequencies as low as 0.01 Hz. The device enables the harvesting of energy produced from low frequencies associated with human motion such as walking and sitting.


Licensing Contact

Philip Swaney

615.322.1067

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Masood Machingal

615.343.3548

Dual Interlocked Logic (DIL) Circuit

Vanderbilt researchers have developed a novel combinatorial logic circuit that prevents the propagation of signal glitches such as those caused by radiation-induced transients. The interlocked-feedback circuit accomplishes this without the loss of any speed. The circuit is designed for robustness in both combinatorial and sequential logic applications.


Licensing Contact

Philip Swaney

615.322.1067

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Masood Machingal

615.343.3548

Modular and Stackable Microfluidic Devices

Vanderbilt researchers have invented a modular microfluidic bioreactor that can be layered and stacked to create complex organ-on-chip systems that mimic the behavior of human organ systems such as the neurovascular unit. This modular device can also be assembled from separate, functioning biolayers, and at the end of a study disassembled for examination of individual cellular components.


Licensing Contact

Masood Machingal

615.343.3548
Microfluidics

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Masood Machingal

615.343.3548

Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Taylor Jordan

615.936.7505

Upper Extremity Assistance Device

An assistive device for individuals with upper extremity neuromuscular deficit has been developed by researchers at Vanderbilt. This device is specifically designed for patients having hemiplegia following stroke, incomplete spinal cord injury, multiple sclerosis, and other disabilities and conditions, who may have severe muscle weakness or inability to fully control an upper limb. In order to facilitate use of the upper limb, the patient can wear the device as a substitute for or a supplement to the patient's volitional movement.


Licensing Contact

Taylor Jordan

615.936.7505

Rotary Planar Peristaltic Micropump (RPPM) and Rotary Planar Valve (RPV) for Microfluidic Systems

A Vanderbilt University research team led by Professor John Wikswo has developed low-cost, small-volume, metering peristaltic micropumps and microvalves. These pumps and valves can be used either as stand-alone devices incorporated into microfluidic subsystems, or as readily customized components for research or miniaturized point-of-care instruments, Lab-on-a-Chip devices, and disposable fluid delivery cartridges.


Licensing Contact

Masood Machingal

615.343.3548