The A.R.M.A. Laboratory of Vanderbilt University has developed a novel continuum robot design enabling multi-scale motion at the macro and micro scale. The unique design allows miniaturization with minimal added cost thereby potentially giving rise to a new generation of surgical robots capable of both macro-motion for surgical intervention and micro-scale motion for cellular-level imaging or intervention. Micro-motion is achieved through a unique method for altering the equilibrium pose of the robot via material re-distribution throughout the length of the robot. This process ushers in a new class of surgical robotics termed continuum robots with equilibrium modulation (CREM).